Team Cavatappi Final Testing Results

JAMES BENNETT, ANN LESTER, RYN SHUSTER

Customer and Engineering Requirements

Customer Requirements

CR1:	Design System For Muscle Fabrication
CR2:	Muscle Scalability
CR3:	Reliable Manufacture
CR4:	Safe to Operate
CR5:	Actuated in a "glove-like" mechanism
CR6:	Utilize bundled muscles in parallel
CR7:	1.0*10^3 cm^3 max size of "hand"
CR8:	Flexible/ Durable
CR9:	Reduce leaks in muscle
CR10:	Cost Within Budget
CR11:	Develop End Effector

- CR11: Develop End Effector
- CR12: Develop Demo
- CR13: Individual Finger Actuation

Engineering Requirements

ER1:	End Effector Dimensions: 10 cm cube
ER2:	Muscle coil diameter (d)
ER3:	Cost (USD)
ER4:	Factor Of Safety (FS)
ER5:	# Muscles per Bundle (N)
ER6:	Muscle Length (L)
ER7:	Manufacturing Efficiency (%)
ER8:	Muscle Efficiency (%)
ER9:	Develop Manifold

QFD

Turning Customer Requirements (Explicit and Implicit)	Rud Bflector Dimensions	Musch coil diamerer (d)	Mauntiecturing Cost (USD)	Factor Of Safety (FS)	A Muchsper Bundle (N)	Muscle I cugth ()	Manufacturing Bfliciency (%)	Musch Bffickney (%)	
Design System For Musice Fabrication	0	0	•	0	0	•	∇	0	
Muscle Scalability	•	0	0	•	•	\triangleleft	•	0	
Reliable	\bigtriangledown	∇	0	∇	0	•	0	∇	
Safe to Operate	\bigtriangledown	\bigtriangledown	∇	0	\bigtriangledown	•	\bigtriangledown	∇	
Acuated in a "glove-like" mechansim	\bigtriangledown	•	\bigtriangledown	0	0	∇	\bigtriangledown	•	
Utilize bundled muscles in parallel	•	•	0	•	\triangleleft	\triangleleft	•	•	
1.0°10^3 cm^3 maximum size of "hand"	0	•	\bigtriangledown	∇	•	\bigtriangledown	•	•	
Flexible/ Durable	0	\bigtriangledown	\bigtriangledown	0	\bigtriangledown	\bigtriangledown	•	∇	
Reduce leaks in muscle	0	\bigtriangledown	\bigtriangledown	0	\triangleright	•	\triangleright	∇	
Cost Within Budget	\triangleright	\bigtriangledown	•	∇	0	\bigtriangledown	\triangleright	0	
Develop End Effector	∇	∇	•	∇	0	∇	∇	0	
Develop Demo	∇	∇	•	∇	0	∇	∇	0	
Individual Finger Actuation	∇	∇	•	∇	0	∇	∇	0	

Completed and Planned Tests

Tests	CRS	ERs
Material Heating	1,3,9	7
Muscle Manufacture	1,2,3,8,9	2,6,7
Safety (Pressure)	3,4,9	2,4,6,8
Efficiency (Muscles)	3,6	2,5,6,8
Budget/ Muscle Cost	10	3
Device/Demo Test	3,4,5,6,7,11,12,13	1
-Manifold Leak Testing	2,4,6	1,9
-Syringe Selection Testing	4,5,11,12	

Completed Tests: Material Heating

Testing plan

- Testing was split into three testing sections
 - Undrawn/untwisted/uncoiled
 - Undrawn/untwisted/coiled
 - 2x drawn/twisted/coiled
- Section 1-Undrawn/untwisted/uncoiled
 - Utilized 170 degrees Fahrenheit as baseline temp
 - Stepped down temp by increments of 10
 - Omitted 130 and 120 temp tests because time to cook became inefficient
 - Used gathered information to generate section 2 parameters

emperature (F 🕋	Observed Time (min)	Length (cm) 👘	Monofilament 🕋	Next steps	 Notes
170	5	5	Present	No useful changes	
				Proceed to	
170	10	5	Present	undrawn/coiled test	
					Too brittle, lower
170	15	5	Present	No useful changes	temperature
160	5	5	Present	No useful changes	
160	10	5	Present	No useful changes	
160	15	5	Present	No useful changes	
160	20	5	Present	No useful changes	
160	25		Brazant	Proceed to	Lower temperature correlates to higher cook
100	25	2	Present	undrawn/correctest	time
150	20	2	Present	No userul changes	-
150	25	5	Present	No useful changes	
150	30	5	Present	No useful changes	
150	35	5	Present	Proceed to undrawn/coiled test	
140	30	5	Present	No useful changes	
140	35	5	Present	No useful changes	
140	40	5	Present	No useful changes	
140	45	5	Present	Proceed to	Testing time becoming inefficient, omit 130 and 120 tests

Completed Tests: Material Heating

Undrawn/coiled	170	10	10	Present
Undrawn/coiled	160	25	10	Present
Undrawn/coiled	150	35	10	Present
Undrawn/coiled	140	45	10	Present

Section 2-Undrawn/untwisted/coiled

• Further testing was completed at 170 for 10, 160 for 25, 150 for 35, and 140 for 45

- Section 3-2x drawn/twisted/coiled
 - Tested at 160 for 25 min
 - Tested at 165 for 30 min
- Testing yielded that the optimum cook time and temp was 165 for 30 min
 - This was based off observation of the muscle fiber after heating in the areas of flexibility, discoloration, damage, flattening of sections, and durability.

2x				
drawn/twisted/coiled	160	25	10	Present
2x				
drawn/twisted/coiled	160	35	10	Present
2x				
drawn/twisted/coiled	165	25	10	Present
2x				
drawn/twisted/coiled	165	30	10	Present

Completed Tests: Muscle Manufacture

Muscles manufactured in different Tygon sizes

- 10 x per size, 170 °F for 30 mins
- Large: 3/16" OD, 1/16" ID
- Medium: 3/32" OD, 1/32" ID
- Small: 1/32" OD, 1/64" ID

Muscles are connected to Luer manifolds and pressurized to 100 psi

• Leaks, heating failures, mechanical failure, pressure failures

Most successful material is tested 20 additional times to estimate success rate

- Large material was most successful
- 26 successful muscles, 4 failed muscles
- <u>86.7%</u> success rate (original of ~ 40 %)

Material	Failures	Successes
Small (10)	3 Heating 5 Mechanical 2 Pressure	0 Successes
Medium (10)	2 Leaks 1 Mechanical 6 Pressure	1 Success
Large (10)	1 Leak 1 Mechanical	8 Successes
Large (20)	2 Leak	18 Successes

Completed Tests: Muscle Safety (Pressure) Trial # Pressure

 Tygon material is mounted to Luer connections Drawn to 3x length 15 tests cut at 5.0 cm Heated to 170 °F for 30 mins End is sealed with Epoxy
 Material is pressurized to failure Pressure measured using LabView setup in DASL
SF calculated based on ult. and op. pressure • $P_{avg} = \sum P_{ult} / 15$ • $P_{op} = 100 \ psi$ • $SF = \frac{P_{avg}}{P_{op}}$
SF = 217.33/100 = <u>2.17</u>

Trial #	Pressure (psi)
1	215
2	235
3	220
4	215
5	230
6	210
7	190
8	235
9	230
0	210
11	220
12	225
13	220
14	210
15	195
Avg	217.33

Completed Tests: Total Cost

Project completed using already available materials in lab or with purchased materials remaining under the \$200 budget (**\$49.44**).

ltem	Cost	Supplier	On Hand	Order By	Part No.	Notes
M3 Bolts	In Lab	Copper State	Yes			
M3 Set Screws	\$ 8.77	Copper State	No	8-Feb		No Longer Necessary
M3 Nuts	In Lab	Copper State	Yes			
Sous Vide	Team Member Owned	Anova	Yes			
Vacuum Sealer	Team Member Owned	Guttale	Yes			
Vacuum Bags	Team Member Owned	Guttale	Yes			
3ML Syringes	\$ 3.82	Qosina	Yes		C3303	Price Assumes 20ct
1ML Syringes	\$ 10.47	Qosina	Yes		C3301	Price Assumes 20ct
Injection Syringe	In Lab	Amazon	Yes			
Male Luer Connector	\$ 7.14	Qosina	Yes	8-Feb	11590	Price Assumes 30ct
Female Luer Connector	\$ 12.45	Qosina	Yes	8-Feb	11765	Price Assumes 30ct
Tygon	In Lab	St. Goblain	Yes			3/32" OD 1/32" ID
Hydraulic Tubing	\$ 12.03	Amazon	Yes	7-Feb		
Monofilament	In Lab	Trilene	Yes			20Lb Test .018" OD
Mandrel Material	In Lab		Yes			16ga Wire
Mineral Oil	In Lab		Yes			
Print Resin	Donated		Yes			
Print Filamnet	Donated		Yes			
Thread	\$ 1.35	Michaels	Yes			
Ероху	\$ 6.17	Walmart	Yes			
UV Set Glue	\$ 18.30	Amazon	Yes			
UV Flashlight	Included with Glue	Amazon	Yes			
Eyelet Connector	In Lab		Yes			0.25" ID
T_Slot Rail	1.96/in	Home Depot	Yes			400 & 600
T_Slot Bracket	0.89/item	Home Depot	Yes			401 & 600

Completed Test: Muscle Efficiency

- Working Muscle Bundle
 - 32 active coils, 4.0 cm length
 - 2x muscles of 3x draw length
 - 0.5 kg weight
 - ~ 150 psi (1.03*10^6 Pa)
 - ~ 0.4 mL fluid (4.0*10^-7 m^3)
 - ~ 3.0 cm deflection (0.03 m)

Efficiency

•
$$eff = {}^{W_{out}}/_{W_{in}} = {}^{mgh}/_{P*V} = 0.356$$

35.6% efficiency (21.0%)

Figure 4: Actuating Muscles

Device/Demo Tests To Date:

Hydraulic System Testing:

-Excess pressure was run through the manifold with muscles attached while also hanging a 1kg weight from the bundle.

-Leaks discovered at the hydraulic connections (input side and output)

-Manifold itself was mostly watertight

-Epoxy not watertight over time. Replaced with UV cured glue that hasn't shown any degradation over time.

-"Winged" Luer connectors more brittle than previously thought and prone to cracking under stress (excess tightening force). Have backup similar barbed connectors on hand.

Figure 5: Female Luer Connector

Figure 6: 1mL and 3mL Syringes

Device/Demo Tests To Date:

Hydraulic Testing cont.:

-During the manifold testing both 1mL and 3mL syringes were utilized.

- -3mL Syringes failed under pressure due to the plunger not being meant for that kind of force, caused leaking on the back end.
- -1mL Syringes worked successfully without failure, also more aesthetically pleasing and made from better materials.

Initial Device Testing:

- Current Elastic is too weak to counter-act the pull of the bundle without breaking.
- Physical limit need to be placed on backwards motion of squeezeto-close end effector.

Spec Sheet: Customer Requirements

Engineering Requirement	Met: Yes or No	Client Acceptable: Yes or No
CR1: Muscle Fabrication	Yes	Yes
CR2: Muscle Scalability	No	Yes
CR3: Reliable Manufacture	Yes	Yes
CR4: Safe to Operate	Yes	Yes
CR5: "Glove-like" Actuation	No	TBD
CR6: Parallel Muscle Bundling	Yes	Yes
CR7: Hand Size < 10 cm cube	Yes	Yes
CR8: Flexible / Durable	Yes	TBD
CR9: Reduce Muscle Leaks	Yes	TBD
CR10: Cost Within Budget	Yes	Yes
CR11: Develop End Effector	Yes	Yes
CR12: Develop Demo	No	TBD
CR13: Individual Finger Actuation	Yes	TBD

Spec Sheet: Engineering Requirements

Engineering Requirements	Target Value	Measured/ Calculated Value	Target Met	Client Acceptable (Yes or No)
ER1: End Effector Dimensions	V < 10cm^3	5.7cm x 6.2cm x 7.1cm	Yes	Yes
ER2: Muscle Coil Diameter	D < 4.5 mm	4.5 mm	No	TBD
ER3: Cost (USD)	C < \$200.00 USD	\$49.44	Yes	Yes
ER4: Safety Factor	SF = 2.0 ± 0.05	2.17	Yes	Yes
ER5: # Muscles per Bundle	N > 1	2	Yes	Yes
ER6: Muscle Length	None	4.0 cm	Yes	TBD
ER7: Manufacturing Efficiency	Eff > 40%	86.7%		Yes
ER8: Muscle Efficiency	Eff = 20 ± 1 %	35.6%	Yes	TBD
ER9: Manifold	WT @ > 100 PSI	Watertight at 160 PSI	Yes	Yes